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Abstract

This paper discusses the problem of knowledge discovery in image databases with particular focus
on the issues which arise when absolute ground truth is not available. It is often the case that a user
exploring a large database is in search of items that are not easy to define completely. One way to
circumvent this problem is to ask the user to specify examples of the item of interest. However, Iabelling
of specific items may in itself be inconsistent, whether it is multiple labels from a single labcller  at
different times or labels from different labcllers.  The paper discusses issues which arise in terms of
elicitation of subjective probabilistic opinion, estimation of basic scicntitic  parameters of interest given
probabilistic labels, learning from probabilistic labels, and effective evaluation of both user and algorithm
performance in the absence of ground truth. The problem of searching the Magcllan image data set in
order to automatically locate and catalog small volcanoes on the planet Venus is used as a case study. In
the absence of calibrated ground truth, planetary scientists provide subjective estimates of ground truth
based on visual inspection of Magellan  images. Data from the Magellan  volcano detection project is
used to illustrate the various techniques which we have developed to handle these issues. The primary
conclusion of the paper is that knowledge discovery methodologies can be modified to account for lack
of absolute ground truth provided the sources of uncertainty in the data are carefully handled.

1 Introduction

At last year’s KDD workshop we presented initial results on building art automated system for locating and
cataloging small volcanoes on the surface of Venus, using radar images rcturrted by the Magellan  spacecraft
[Fayy93].  In particular we discussed some of the issues which are unique to the problem of knowledge
discovery in image databases. This paper tackles the problcm of developing and evaluating knowledge
discovery systems for image databases when ground truth is not available. Remote-sensing image analysis
problems where there is a complete absence of ground truth are incrcasingl  y common: the Magcllan  volcano
detection project is used as an illustrative example. Indeed, the problem of uncertainties in ground truth is a
pervasive one that affects not only image applications. For example, in medical diagnosis absolute diagnoses
may not be known with ccrt.ainty,  yet may be assumed to bc ce~in. In general, if one is given a set of
labeled cases in a database, it maybe the case that the labels contain “noise” for various reasons. In practical
applications, this factor may become so significant, that simply ignoring it is not a realistic option, The
volcano detection problem certainly falls in this category, as we shall illustrate.

The phrase “lack of ground truth” requires some comment: what is typicall  y available is not a complete
lack of ground truth, but rather, subjective cslimatcs of ground truth. In other words, a domain expert (or
group of same) examines the available data (an image) and provides a subjective estimate of the class labels
for particttlar  locations within the image. Hence, there is an additional source of noise in the data, namely
the noisy  estimates from  the expert. It is critical that this noise source be modelled  and calibrated as far
as possible. The alternative is to ignore the noisy nature of the labclling  process, assume that the labels
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a~ correc~ and condition all algorithm design, parameter estimation, and performance evaluation on this
premise, If the Iabelling  process is not very noisy this is often the practical approach.

In this paper we focus on the case where there is considerable visual ambiguity in the images, such
that there will bc significant differences on the same data between the labelings of the same expert at
different times and between different experts. Ignoring this source of noise is likely to lead to a significantly
miscalibrated  system. For example, in the volcano detection problem, the local density of volcanoes in a
given planetary region is a parameter of significant geological relevance: as will be discussed later, ignoring
the subjective uncertainty in the labelling would lead to a systematic bias in terms of over-estimating
local volcano densities. Since volcano counts and distributions are used primarily to infer the gelogical
history/evolution of the planet, this systematic bias in turn would bias other scientific inferences made based
on it, possibly leading to misguided theories about the underlying phenomena.

First the general background to the problem is described, namely the Magellan  mission and the scientific
importance and relevance of investigating volcanism on Venus. We then review our overall philosophy
behind developing “user-trainable” tools for knowledge discovery in databases, focusing in particular on
the development of machine learning and pattern recognition tools which allow a scientist to train a search
algorithm based on sample objects of interest. This sets the stage for the main discussion of the papec the
modelling  and treatment of subjective label information. We outline the experimental methodology and
basic principles of subjective elicitation, using data obtained from the participating scientists as examples.
The following issues are then discussed in some detail: noise models to relate probabilistic labels to
ground truth, performance evaluation metrics which incorporate probabilistic labels, and learning algorithm
modifications. We note that previous work in the pattern recognition literature has dealt with some of the
general theoretical aspects of this problem [Lug92, Silver80];  the originality of the work described here lies
in the handling of the ground truth ambiguity problem in the context of a large-scale, real-world, image
analysis problem.

2 Application Domain: Finding Volcanoes on Venus

Both in planetary science and astronomy, image analysis is often a strictly manual process and much
investigative work is carried out using hardcopy photographs. However, due to the sheer enormity of the
image databases currently being acquired, simple manual cataloging is no longer a practical consideration
Jy all of the available data is to be utilized. The Magellan Venus data set is a typical instance of the now
familiar data glut situation in science, medicine, industrial applications, as well as security and defense
contexts.

The background to this work is the notion of a trainable image analysis system; a scientist trains the
system to find certain geological features by giving it examples of features to be located. The scientist can
thus customize the tool to search for one type of feature versus another simply by providing positive and
negative examples. In addition to automating laborious and visually-intensive tasks, the system provides an
objective, examinable, and mpcatable  process for detecting and classifying objects in images. This allows
scientists to base their analysis results on uniformly consistent data, free from subjective variations that
invariably creep in when a visually exhausting task requiring many months or years is undertaken.

The Magcllan spacecraft transmitted back to earth a data set consisting of over 30,000 high resolution
synthetic aperture radar (SAR) images of the Venusian surface. This data set is greater than that gathered by
all previous planetary missions combined — planetary scientists arc literally swamped by data [Fayy94]. The
stud y of volcanic pmccsscs is essential to an understanding of the geological evolution of the planet [Head9 1].
Central to volcanic studies is the cataloging of each volcano location and its size and characteristics. The~
are estimated to be on the order of 106 visible volcanoes scattered throughout the 30,000 images [Aubelc90].
Furthcrmom, it has been estimated that manually locating all of these volcanoes would require on the order
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Figure 1: A small selection of volcanoes from four categories as labeled by the geologists.

of 10 man-years of a planetary geologist’s time to carry out.
Empirical results using spatial eigenmpresentations  (combined with supervised classification algorithms)

have demonstrated that a trainable image analysis syslcm can be roughly competitive with humans in terms
of classification accuracy [Bur194,  Fayy94]. The system uscs a matched filter (for example, the mean of
locally windowed training examples of volcanoes) to initially focus attention on local regions of interest.
The detected local regions are projected into a subspace  consisting of significant principal directions of the
training data — the subspace itself is determined by selecting the most significant components produced
by a singular value decomposition of the training data. Supervised learning is used to produce a model
which can discriminate between volcano and non-volcano local regions in the projected subspace. A
simple maximum-likelihood Gaussian classifier with full covariance matrices has been found to perform as
well as alternative non-parametric methods such as neural networks and decision trees for the problem of
discriminative learning in the projected eigcnspace [Bur194].

3 Eliciting Ground TYuth Estimates from Scientists

In the volcano location problem, as in many remote sensing applications, real ground truth data dots not
exist, No one has ever actually been to the surface of Venus (apart from a Russian robotic lander which
melted within a fcw minutes), and despite the fact that the Magellan  data is the best imagery ever obtained of
Venus, scientists camot  always dctcrminc  with 100% certainty whether a particular image feature is indeed
a volcano.

In principle, for a given local region of interest, a scientist can provide a subjective probability that a
volcano exists at that point given the local intensity values. It can been shown [Smyth94] that eliciting
subjective probabilities is preferable to forcing a “yes/no” decision — in particular, it allows more accurate
estimation of the underlying discriminant surfaces (compared 10 lcaming from’’ycs/no” labels) for a given
training sample size. However, this result is conditioned on the assumption that the scientists arc providing
perfect unbiased subjective probability estimates, It is well known that accurate elicitation of subjective
probabilities from humans is quite difficult and subject to various calibration errors and biases.

3



3.1 Defining Sub-Categories of Volcanoes

A more effective approach in practice is to have the scientists label training examples into quantized pro-
bability  bins, when the probability bins correspond to visually distinguishable sub-categories of volcanoes.
In particular, we have used 5 bins: (i) summit pits, bright-dark radar pair, and appanmt topographic slope,
all clearly visible, probability 0.98, (ii) only 2 of the 3 criteria in category (i) are visible, probability 0.80,
(iii) no summit pit visible, evidenee of flanks or circular outline, probability 0.60, (iv) only a summit pit
visible, probability 0.50, (v) no volcano-like features visible, probability 0.0. The probabilities correspond
to the mean probability for a particular bin (the mean probability that a volcano exists at a particular location
given that it has been identified as belonging to a particular bin) and were elicited based on considerable
discussions with the participating planetary geologists. How we use these probabilities for both training and
evaluation will be discussed in more detail in the next few sections.

Figure 1 shows some typical volcanoes from each category. The use of quantized probability bins to
attach levels of certainty to subjective image labclling  is not new: the same approach is routinely used in
the evaluation of radiographic image displays to generate subjective ROC (receiver operating characteristic)
curves [Chest92]. However, this paper extends the basic approach by defining the notion of probabilistic
ROC curves (see Section 5).

3.2 Methodologies for Collecting Subjective Label Information

Participating in the development of the detection algorithm are planetary geologists from the Department of
Geological Sciences at Brown University. We are fortunate to have direct collaboration with two members
of this group who are also members of the Volcanism Working group on the Magellan  Science team (Jayne
Aubcle (JA) and Larry Crumpler (LC)).  Both of these scientists have extensive experience in studying both
earth-based and planetary volcanism and have published some of the standard reference works on Venus
volcanism [Aubelc90,  Head91 ]. Hence, their collective subjective opinion is (roughly speaking) about as
expert as one can find given the available data and our current state of knowledge about the planet Venus.

It is an impomnt  point that, in the absence of absolute ground ~th~ the goal of our work is to ~ as
comparable in performance as possible to the scientists in terms of labelling accuracy. Absolute accuracy
is not measurable for this problcm. Hence, the best the algorithm can do is to emulate the scientist’s
performance — this point will become clearer when we discuss performance metrics later in the paper.

A standard Magellan image consists of 1000 x 1000 pixels, where the pixels a~ 75m in resolution for
the results referred to in this paper. Small volcano diameters are typically in the 2–3km range, i.e., 30 to
50 pixels wide. Volcanoes are often spatially clustered in volcano fields. As a consequence, most of the
volcanoes are expected to be found in about 10-20% of the total number of images, and within these images
there may number as many as 100 or more volcanoes, although typicall  y the number is in the 10-50 range.

The standard manner in which we obtain labels is to have a labcller  interact with an X-windows software
tool whereby he or she uses mouse-clicks to locate candidate volcanoes. Starting with an initially blank
image, the labeller pmcecds to sequentially click on the estimated centers of the volcanoes. The labeller
is then prompted to provide a subjective label estimate from a choice of categoncs  14 as described above
— by default, locations which are not labcllcd  are considered to have label “O” (non-volcano). Clearly it
is possible that based on the visual evidence, for the same local image patch, the same label may not be
provided by different labcllcm, or indeed by the same labcllcr  at different times. In addition to labels, the
labcller  can also provide a tltted diameter estimate by fitting a circle to the feature. Figure 2 shows a typical
image labcllcd  in this manner,

After completing the labelling,  the result is an annotation of that image which can be stored in standard
database format — the unique key to the image is a label event, which corresponds to a particular lati-
tudcflongitude  (to the resolution of the pixels) for a panicular labellcr  at a particular time (since the same
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Figure 2: Magellan SAR image of Venus with consensus ground trulh showing size and locations of small
volcanoes.

labeller  may relabel tin image muhiplc times). It is this database which provides the basic reference frame-
work for deriving estirnalcs  of geologic parameters, training data for the learning algorithms, and reference
data for performance evaluation. A simple form of spatial clustering is used to determine which label events
(from different labellcrs)  actually correspond to the same geologic feature (volcano). It is fortunate that
volcanoes tend not to overlap each other spatial] y and thus maintain a separation of at least a few kilometers,
and also that different scicntis~s  tend to bc quilt consistent in their ccntring  of the mouse-clicks — mean
differences of about 2.5 pixels (Euclidean distance) have been found in cross comparisons of label data fmm
scientists JA and LC, which is reasonable considering the precision onc can expect from mouse location on
a screen. Hence, accurate location of the volcanoes is not in itself much of problcm.

Table 1 shows the confusion matrix bctwccn  Iabcllcrs .lA and LC for a set of 4 images. The (i, j)th
clement of the confusion matrix counts the number of Iabcl events which corresponded to labellcr A
generating label i and labcller B gcncraling label j, where bod~ labels were considered to belong to the
same visual  feature, i.e., were within a few pixels of each other. The (i, O) entries count the instances where
labellcr A provided label i, but labcllcr  B did not provide iiny  label — entry (0,0) is always defined to be zero
by default. Ideally, the confusion mawix would have all of its cnLtics  on the diagonal if both labellcm  agreed
completely on all events. Clearly, however there is subslan[ial  disagrccmcnt,  as judged by the number of
off-diagonal counts in Lhc rnawix. For example, label 3’s arc particularly noisy, in both “directions.” Note
that on the order of 50% of the Iabci 3‘s dctcctcd  by ciLhcr Mellcr  arc not dc[cctcd at all by the other labeller.
On the other hand only on the order of 10% of the label 1‘s of cilhcr Iabcllcr arc missed by the other. The
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matrix underlines the importance of modelling probabilistic labels for this particular problem.

Table 1: Confusion Matrix of Scientist A Vs. Scientist B.

Scientist A
Label 1 Label 2 Label 3 Label 4 Not Detected

Scientist B
Label 1 19 8 4 1 3
Label 2 9 8 6 5 5
Label 3 13 12 18 1 37
Label 4 1 4 5 24 15

Not Detected 4 8 29 16 0

4 Relating Probabilistic Labels to Ground lkuth

Before we describe the particular methods used for training, estimation, and evaluation it is informative to
look at a relatively simple model for the noise introduced into the data by the subjective labelling  process.

We will use the shorthand v and u to denote the events “volcano present” and “volcano not present”,
mspcctively,  and 1 to denote a particular label, O <1< l~aX (l~., = 4 for the labclling problem). Let V be
a binary random variable taking values v and U, and Ict L bc another discrete random variable taking values
l,l<l~lmu. The shorthand notation of “v” for “V = v:’ etc., will be used. Note that we assume that
labelling  is stochastic rather than deterministic in the sense that presented multiple times with the same local
image region, a scientist may not always provide the same label. The relevant probabilities we arc interested
in are conditional probabilities of the form p(volcano  Ilabcl)  = P(V It ). In particular, marginal probabilities
such as p(volcano) = p(v) are not well-defined without reference to a particular region of a particular size.

Figure 3: Causal Model 1 of Volcano Labelling  Process.

Consider Figure 3 which identifies a simple causal model: volcanoes arc mapped to an image intensity
~ which in turn is mapped to a label by the scientists, There is an implicit conditionalization  on local pixel
regions of fixed size, i.e., the labelling  process is effectively treated as a series of decisions on such local
regions. From Figure 3 we arc ultimately interested in determining the probability of a volcano given ~. To
train and evaluate our models wc need to estimate terms such as y(vll). If we expand this out, we have to
condition on all possible realizations of the image intensity ~;

Given the dimensionality  of j (all possible intensities of a local region), this method of estimating p(vlt) is
clearly irnpmctical.  Note that the above equation can bc rewritten as:
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since by the causal model of Figure 3, V is conditionally independent of L.
It is convenient to assume that the volcanoes correspond to visually distinguishable categories, namely

“types.” In addition, “type O“ will be used to identify all local images not covered by the “well-distinguished”
types (i.e., non volcanoes in general). “Type” will be treated as another random variable T’, taking values
1 ~ t < ~ax, where h,X = l~~X typically. Conceptually it is useful to imagine that there is an Oracle who
can unambiguously identify types given intensity information; the main point is that we do not have access
to such an Oracle, but rather have access only to fallible scientists who provide labels, noisy estimates of
types. In other words, T is an unobserved, hidden variable, while L is observed directly.

Figure 4: Causal Model 2 of Volcano Labelling  Process: volcanoes to types to labels.

To circumvent the problems of estimating probabilities conditioned on intensity values the following
simplification of the model is proposed: replace the high dimensional intensity ~ with the low-dimensional
Tin  the causal model, 2’ can be considered a quantization  of the intensity map. The effect is to remove any
dependency on intensity values in the model, which can now bc written as

(3)

The dependence of types on volcanoes will be assumed given by the scientists as a general piece of prior
information — in particular, p(vlt), for t = 1,2,3,4 are the subjective probabilities we have elicited from
the scientists which described the mean probability that a volcano exists at a particular location, given that
it belongs to a particular type. These subjective probabilities are not conditioned on fabefs  per se, but on the
~pes, i.e., p(vlt) ~ {0.98,0.80,0.60,0.5,0.0}, t G {1,2, 3,4,0}.

The p(t]/) terms in Equation (3) rcpmsent  the estimation noise resulting from the fact that scientists
am unable to specify, with 100% certainty, the particular “type” of a volcano. Determination of these
probabilities is tendeted  non-trivial by the fact that the true types t arc never directly observed, and thus
some assumptions about the relationship between 7’ and L must be made in order to infer their dependence.
At this point in time, estimating the p(t 11) terms fmm multiple labcllings  of the same data represents work in
prognxs — one proposed method is outlined in Appendix 1, but we will not discuss the p(tli) estimation in
any more depth. Appendix 2 outlines the procedures for handling data which has been labcllcd  by multiple
experts.

Note that the overall effect of the above models will bc to reduce our overall confidence that a typical
local region is a volcano, given some labclling information — this has direct implications for estimating
the overall numbers of volcanoes in a particular region, and so forth. For example, in accordance with the
models described in Appendix 2, local regions which which have label disagreements bdtwecn labelings
wiIl be down-weighted compared to volcanoes which rcccivc  unanimous labcllings.

5 Performance Evaluation: Probabilistic Free-Response ROC Analysis

Given that the scientists cannot classify each object with 100% confidcncc, how can we assess how WC1l
our algorithms arc performing? Wc have investigated the idea of “consensus ground truth”: a consensus-
bascd probabilistic labelling is generated by multiple scientists working together in labelling  images. The
individual labelings and the results of the automated detection systcm  dcscnbcd  earlier are then evaluated
in terms of performance relative to the consensus. The performance of an algorithm is considered to be



satisfactory if, compared to consensus ground truth, its performance is as good as that of an individual
scientist,

As a performance evaluation tool we use a variation of the well-known receiver operator characteristic
(ROC) methodology. The purpose of the ROC is to determine the complete range of perfomlance  of
a decision system in terms of its estimated detection rate versus false alarm rate. Consider a binary
hypothesis testing problem (equivalently a binary classification or discrimination problem): the 2 mutually
exclusive and exhaustive hypotheses are denoted as WI and Q. Assume there exists a certain fixed cost

cij, 1< i, ~, <2, which is incu~d when ~i k the chosen hypothesis and Wj  is true. The observed data (the
features) correspond to a d-dimensional random variable ~. taking values Z. Standard Bayesian  decision
theory [VanTrees68] shows that the optimal decision rule (in terms of minimum cost) must be of the form:

(4)

In general, when the costs are not known exactly (as is often the case in practice), one can treat the term on
the right as a varying decision threshold t.

The probability of detection, Pd(~), is defined as the probability that the decision algorithm chooses WI
when WI is the correct hypothesis; similarly, the probability of false alarm, pfa (t) is the probability that the
decision algorithm chooses w when w is the correct hypothesis. Both probabilities are implicit functions
oft, the decision threshold: as t increases the systcm becomes more conservative in its decisions, reducing
the false alarm rate; as t decreases the system will increase its detection rate, but at a cost of increasing the
false alarm rate. When the conditional densities P(W1 la) and P(W Iz) are known exactly one can determine
Pal(t) as a function of p~a (t); this plot is known as the ROC and provides the characteristic signature of a
decision system over the entire range of possible detection/false alarm operating points.

Since in practical applications P(W1 Iz) and P(WIL) are not known, the ROC must be estimated directly
from data. This is straightforward provided the decision system is producing either a direct estimate of the

wratior= ~~~), or some monotonic function of r. The estimation procedure is to vary r (or a monotonic
function of same) as a decision threshold on a labelled  training data set and count the resultant numbers of
detections and false alarms for each value of r. A training set of size N produces N + 1 operating points
(including the end points of (0.0,0.0) and (1.0, 1.0)). One converts the number of detections and number of
false alarms to probabilities by dividing by the total number of training examples of class W1 and class Q
respectively. Thus, one can plot an empirical ROC, the estimated probability of detection versus estimated
probability of false alarm.

For the volcano. detection problem, the reference labels are taken from the consensus labclling,  i.e., this
is in effect treated as ground truth. Class WI corresponds to volcanoes, class w to non-volcanoes. False
alarms correspond to label events which are categorized by the detection system as being of class volcano,
when the consensus labclling  indicates a non-volcano event, i.e., a local region which was not labelled.
Them is a problem in defining the probability of false alarm, since it is difficuh to define the pnorprobabilily
of class q. For example, should the prior probability be proportional to the number of pixels in the image
which were not labellcd  as volcanoes ? This definition does not make much intuitive sense, since it would
be a function of the number of pixels in a given image (one wants the ROC to be invariant to changes in
such parameters) and also since it would result in an astronomical y high prior in favour of non-volcanoes.

Hence, instead of plotting de[cction versus false alarm rates, we usc detection rate versus ~ulse alarms
per total  number ojdefections — this normalized false alarm rate is a much mom useful parameter since it is
invariant to the size and resolution of the images used to dctcrminc  the ROC. This plot is no longer directly
interpretable as a standard ROC since the false alarm rate axis can now run from O% to some arbitrary
pementage  greater than 100%, i.e., there may have been more false alarms detected than true detections in
total for some threshold operating points. This slightly moditlcd  ROC methodology is essentially the same
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Figure 5: Probabilistic ROC curves showing the performance of four planetary geologists and our automated
algorithm.

as the free-response ROC (FROC) used in evaluation of radiology display systems [Bunch78,  Chakra90].
Furthermore, standard ROC and FROC approaches assume that ground truth is known. When ground

truth is known only in probabilistic form as described earlier, one must allow for the fact that each detected
local region is only a detection with probability p: there is an associated probability of 1 – p of it being
a fatse atarm. These probabilities are determined with reference to the consensus labelling:  for example,
for a given tlmxhold  value, if the detection system being evaluated detects a particular local  region which
has been Iabelled  by the consensus as category 2 (probability of volcano = 0.8), then this is counted as 0.8
of a detection and 0.2 of a false atarm. The overall effect is to drag the non-probabilistic ROC (where no
allowance is made to for the probabilistic effect) towards the “center” of the plot, away from the ideal “false
alarm rate 0.0, detection rate 1.0” operating point. Furthermore, the ideal “perfect” operating point is no
longer achievable by any system, since the reference data is itself probabilistic. Hence, an effective optimal
ROC is defined by exactly matching the probabilistic predictions of the consensus — one can do no better.
Note that the actual probability values used to weight detections and false alarms can be determined by the
estimation methods described in the Appendices; for the nxwdts  reported here, only consensus labels were
used as reference, and they were assumed to be noiseless in terms of estimation error (i.e., p(tll) = 1.0, t = 1
and p(t[l) = 0.0, t # /).

We denote the probabilistic method with the normalized false alarm rate as the probabilistic FROC
(PFROC)  (for pmblcms whe~ the base rate of class w is well-defined one could also define the probabilistic
ROC (PROC)).  Within this framework, the performance of a human labcller  can only be determined within
the resolution of the quantized probabilistic bins used in the subjective labelling  process, Whh k bins, one
can determine the location of k operating points on the PFROC, including the (0.0, 0,0) point. Again, the
relative probability weights for each category of volcano correspond to the probabilities assigned to the
consensus labels.

Figure 5 shows a PFROC curve for four images, comparing the performance of 4 planetary geologists
(JA, LC, and two others) and the current version of the automated detection systcm.  A consensus of 2
planetary geologists (JA and LC) was used as reference. The consensus labclling was determined some
time after the individual labelings by JA and LC. The algorithm was as described in Section 2 (and in mo~
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detail in [Bur194]) and was evaluated in cross-validation mode (trained on 3 of the images, and tested on the
4th, repeated 4 times). In total, the consensus labelling  produced 163 volcanoes, which correspond to the
100% point on the y-axis: as described above, the false alarm rates are determined relative to the 163 “true”
detections.

The upper curve is the optimal achievable performance on these 4 images relative to the consensus
Iabelling,  The other curves largeIy  parallel this curve but arc 10 to 50% less accurate in terms of detection
rate at a fixed false alarm rate. Note that the algorithm performance is comparable with the scientists over
the 20 to 80% false alarm range.

The performance of the individual scientists relative to the consensus is not as good as might have been
expected a priori. Nevertheless, we feel these results provide a true picture of the relative accuracy with
which volcanoes can be detected in the Magellan  images. This underlying ambiguity in volcano detectability
should be recognized and factored into any scientific inferences made based upon labelings by individuals
or machine algorithms. The consensus labelings themselves arc also probably noisy (to a lesser degree),
but we have not quantified this yet.

6 Other Aspects of Probabilistic Labels

The acknowledgement of uncertainty in the labelling  can have other significant impacts on overall image
analysis methodologies. For example, as described in detail in [Smyth94]  and [Bur194],  the matched filter
generation, SVD subspace  generation, and discriminant learning procedures can all be modified to account
for probabilistic labels. The general approach is based on the notion of assigning fractions of a training data
sample to each class in proportion to the subjective label weight: for example, a category 2 volcano might
be treated as 0.8 of a sample for the volcano class and 0.2 of a sample for the non-volcano class. When
the estimation noise can be calibrated and there are labels from multiple experts, the methods of Appendix
1 and 2 can be used to determine more accurate relative class weighings. While this weighted treatment
of probabilistic labels leads to improved performance in theory [Smyth94], in our experiments to date we
have found no improvement in performance by learning from probabilistic labels as compamd  to the default
approach of treating all labelled  items as examples of class volcano. Investigation of the data revealed that
the subspace  projection technique was destroying any probabilistic structure which existed in the data at
the level of the intensity maps, i.e., category 1 ‘s, 2’s, 3‘s and 4’s were all being projected into the same
region of feature space (as revealed by 2-d scatterplots  of various feature pairs) and completely overlapped
each other without any structure. If the probabilistic structure had been preserved, one would expect to see
the 1‘s to be further away from the non-volcano class than the 2’s and so forth. This is an example of a
learning algorithm dealing with a feature space (SVD filter  responses) which is different than that on which
the labclling  is performed (local intensity maps), with the result that the probabilistic labels do not relate
in any useful way to the space in which lcaming  is taking place. As a consequence, a detection algorithm
based only on SVD filter responses cannot rcproducc  accurate posterior probability estimates which match
those of the scientists subjective labels. A current direction of investigation is to seek projections which
preserve the probabilistic label information, which in turn should result in better PFROC performance.

Estimation of various spatial statistics can also bc conditioned on the probabilistic nature of the labels
— for example, non-parametric kcmel density estimates of the volcano diameters (an important geological
“signature”) can bc modified to take probabilistic labels into account as described in [Smyth94]. Densities
which arc not unimodal are particularly sensitive to probabilistic labels: incorrect treatment of the labels
can lead to oversmoothing  of mal modes, or the introduction of spurious ones. Once again, the actual values
of the probabilistic labels area function of the particular noise model one chooses to use as described in the
Appendices. Estimation of spatial statistics in lhis manner is a topic of curtvnt investigation.
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7 Conclusion

‘Tlmmajorfocus  of this paper is the tmatrnent of uncertainty in the training data when designing and evaluating
knowledge discovery sys!cms for image databases. The net effect of ground truth ambiguity is to propagate
an extra level of subjective noise into processes such as training learning algorithms, performance evaluation
methodologies, and estimation of spatial statistics of scientific interest. Handling this uncertainty rcquinx
the introduction of special techniques such as the probabilistic free-response ROC (PFROC)  methodology
discussed in this paper. If issues of ground truth ambiguity ate simply ignored, a knowledge discovery
system may appear to perform inaccurately, while in fact it is not possible for it to perform any better. By
characterizing user performance relative to a standard (such as consensus labclling  in our case) one can
target the more realistic, and possibly achievable, goal of matching the discovery algorithm s performance
with that of an individual user compared to the chosen standard.

The techniques described in this paper provide a framework for accurate estimation and evaluation
of basic image quantities of interest for applications where absolute ground truth is not available. Such
applications arc becoming increasingly common as remote-sensing platforms provide orders of magnitude
more data and well-calibrated ground truth constitutes a tiny (and perhaps even zero) fraction of the overall
data se~
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Appendix 1: Estimating the p(t[l) terms from multiple Iabellings

Consider that we have a database of N labelled  local regions. Assume that each local region has been examined m
times, either by m different scientists or groups of same, or the same scientist multiple times, or some combination
of same (the extension to the case where some subsets of local regions have been examined by different numbers of
labellers  or groups of labellers  is trivial and will be omitted to keep notation simple). Hence, each local region has
been labelkd as one of the 4 labels 1/2/3/4 by at least one of tie m labellers.

For each label event assign a “vote” of 1 /m to each label 1/2/3/4 each time that a labeller  assigns that label, and a
“vote” of 1 /m to the label O if a labeller  did not label it at all, Implicit here is an assumption that each Iabeller is being
weighted equatly  — extensions to the case of non-equal weighting are straightforward and are not dealt with here. We
can interpret the sum of the votes for a particular label (from different labellers)  w the probability that lml intensity  i
will be assigned label 1. More formally, we deftne the estimator

(5)

where 6(z, g) = O unless x = y, and ‘Uk ~) is the label provided by the klh labeller for the local intensity map ~.
We can now estimate the marginal probability that an arbitrary labeller  will assign label 1 to a local region, by

summing over all intensities:

N

fi(l) = ~lxllm(ij) (6)
j=l

(7)

where j is an index over the IV local regions in the database. To estimate p(tll) by Bayes’ rule we first need to estimate
p(t, J). TIE following estimator is defined:

= ~w,aiw)l(i) (9)
~

(lo)

(11)

since the type t is independent of the label 1 given the local intensity i. If we define the estimator for @(tlij) to be
the same as for j(ll~~)  (as in Equation 7 above), the estimation process is complete, since all necessary terms are now
defined and can be estimated directly from the database. Finatly, we have that

@(t, 1)
P(w) = ~- (12)

As a simple example, this method was applied m two labcllings  of the same 9 images with the following results:

fi(7’=  lIL= 1) = 0.80, j(L= 1) =0.11 03)
j(l’ = 21L =2) = 0.68, j3(L = 2) = 0.22 (14)
j3(T = 3[L = 3) = 0.70, $(L = 3) = 0.29 (15)
P(T = 41L =4) = 0.78, P(L = 4) = 0.22 (16)
@(z’ = OIL= o) = 0.5, fi(L = O) = 0.16 (17)
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Labelling of 1‘s and 4’s appears to be the most accurate, labelings of 2’s and 3’s less so. Furthermore, it is estimated
that 16% of the local regions identified (out of 330 which were labelled by at least one labeller  in the 9 images) are
truly non-volcanoes.

At this point of our research, we have not settled on using a particular estimation technique for the p(tll)  terms —
we plan to have more detailed results to report by the time of the workshop.

Appendix 2: Handling Data from Multiple Labellers
There are two distinct ways in which data from multiple Iabellers can be combined in the context of this model. In the
first method, a single p(tlz) matrix of probabilities can be derived to characterize the mean estimation noise of all of
the labeller~  then, given a particular set of labels for the same local image region, one can estimate

j(vli) = ~j(vp)fi(lli) (18)
1=1

where @(l Ii) is simply the proportion of labellers  which voted for label 1 as described in Appendix 1, assuming a linear
weighting of experts. Linear weighting of mukiple experts (using a set of coefficients which sum to 1) is the preferred
choice when combining probabilities due to the fact that it is the only weighting scheme to satisfy the marginalization
property [McCon81] — a weighting scheme satisfying this propelly  is invariant to the manner in which the event space
is partitioned.

The second method utilizes a different p(tll) marnx for each labeller  and then uses a linear weighted sum of these
estimates to arrive at composite estimates for the posterior p(t) terms — the posterior p(v) terms are then calculated
in the standard manner using p(vlt).

As with the estimation of the p(tll)  terms themselves, both of these schemes represent work in progress on which
we plan to report more details at the workshop.
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